SPRING 2024
EE330 - Homework 9
1.)

b) Fore $V_{i N}(t)=0$ we gut quicocont moper wage

Here, we sue that pies cant stage of $\operatorname{Vant}(t)=0 \mathrm{~V}$
c) Ion small sipal voltage your $A_{r}=\frac{1 K}{(1+2) K}=\frac{1}{3}$
d)

$$
\begin{aligned}
& V_{\text {ont }}=A_{V} V_{N}(t) \\
& V_{\text {out }}=\frac{2}{3} \sin 500 t
\end{aligned}
$$

Problem 2

> (a)
> Problem 2

$$
\begin{aligned}
& \begin{array}{l}
\text { (b) - Assuming forward Active Region } \\
\qquad \beta=100
\end{array} \\
& \rightarrow \quad I_{B}=\frac{10-0.6}{500000}=1.88 \times 10^{-5} \mathrm{~A} \\
& \rightarrow \quad I_{C}=\beta I_{B}=100 \times 1.88 \times 10^{-5}=1.88 \times 10^{-3} \mathrm{~A} \\
& \rightarrow \quad V_{C Q}=V_{\Delta D}-\left(I_{C} \times 4 \mathrm{~K}\right)=10-\left(1.88 \times 10^{-3} \times 4000\right)=2.48 V_{V} \\
& \rightarrow \text { Since } I_{R_{L}}=0, \quad V_{\text {out } Q}=I_{R L}-8 K= \\
& 0
\end{aligned}
$$

Problem 3

$$
\text { Problem } 4
$$

(a)

(b) Cletermine V_{c} and Vout

$$
I_{c}=\frac{32 V-V c}{4 k \Omega}
$$

$$
\begin{aligned}
& \frac{32-V B}{70 k n}-\frac{V_{B}}{10 \mathrm{~K}}+B\left(\frac{32-V_{B}}{70 \mathrm{kn}}-\frac{V_{B}}{10 \mathrm{k}}\right)=\frac{V_{B}-0.6 \mathrm{~V}}{2 k} \\
& V_{B}= 3.859 \mathrm{~V}
\end{aligned}
$$

$$
\begin{array}{ll}
I_{C}=B I_{B} \\
I_{B} \neq \frac{3.859}{10 \mathrm{~K}}=32-3.859 & I_{C}=100(16.1144 \mathrm{~A})=1.611 \mathrm{~mA}
\end{array}
$$

$I_{B}=16.114 \mathrm{kA}$

$$
I_{B}=16.114 \mu \mathrm{~A}
$$

70k
$I_{c}=$
$=1.6$ $1.611 \mathrm{~mA}=\frac{32 v-v_{c}}{4 k n}$

$$
V_{c}=25.55 \mathrm{~V}
$$

Alternately, if we assume IB is negligible compared to the current through the 70K resistor, the voltage at the base is, by voltage divider, $((1 / 8) * 32 \mathrm{~V}=4 \mathrm{~V}$. Thus the emitter voltage is $4 \mathrm{~V}-0.6 \mathrm{~V}=3.4 \mathrm{~V}$. So the current in the emitter, $\mathrm{IE}=3.4 \mathrm{~V} / 2 \mathrm{~K}=1.7 \mathrm{~mA}$. But since β is large, $\mathrm{IC}=\mathrm{IE}$. Thus $\mathrm{VC}=32 \mathrm{~V}-\mathrm{IC} * 4 \mathrm{~K}=25.6 \mathrm{~V}$.

Note this solution is somewhat simpler and the results are about the same as that obtained by including the base current.

Problem 5

(a.) determine the width so that $I_{d}=0.1 \mathrm{~mA}$

heox $=100 \mathrm{u} / \mathrm{V}^{2} \quad$ Assmate Soturetion
$V_{t n}=0.75 \mathrm{~V} \quad I_{0}=\frac{U_{n c o x}}{2}\left(\frac{\mathrm{~W}}{L}\right)\left(V_{\text {as }}-V_{t n}\right)^{2}$
$0 . \ln A=\frac{100 \cdot \mathrm{~A} / \mathrm{V}^{2}}{2}\left(\frac{\omega}{5 \mathrm{um}}\right)(1.5-0.75)^{2}$
$0 . \ln A=50 \mathrm{nA} / \mathrm{v}^{2}\left(\frac{w}{\operatorname{sim}}\right)(0.75 \mathrm{~V})^{2}$
$W=\frac{0.1 \mathrm{nA} \cdot 5 \mathrm{um}}{50 \mathrm{uA} / \mathrm{V}^{2} \cdot(0.75 \mathrm{~V})^{2}}=17.78 \mathrm{um}$
(b) Smell signel equivelent ciecrit

(C) determine swell sigmal voltage gain

$$
\begin{aligned}
& A_{V}=\frac{2 I_{d Q R}}{\left[V_{S S}+V_{T}\right]}=\frac{2(0.1 \operatorname{AA})(20 \mathrm{kR})}{[-1.5 v+0.75 \gamma]}=-5.33 \\
& \text { (d) Deternine THD }
\end{aligned}
$$

$$
T H D=\frac{V_{m}}{4\left(V_{G S}-V_{T}\right)}=\frac{200 \mathrm{nV}}{4(1.5 V-0.75)}=0.067 \approx 6.7 \%
$$

Problem 6

* Assuming the amplifier is ideal

$$
\begin{equation*}
V_{w}=V_{c} \tag{1}
\end{equation*}
$$

* $V_{c}=V_{\text {bs }}$ of the mosfet

$$
v_{g s} \text { of mos get }=V_{g}-v_{5}=2.5-0=2.5 \mathrm{v}
$$

* For the mosfet to be in saturation,

$$
V_{\Delta s} \geqslant V_{g s}-V_{T_{n}}
$$

Since $V_{D S}=V_{C}=V_{I N}$, thus $V_{D S}<10_{m} V$
$\left.\because \quad V_{D S} \leqslant V_{g S}-V_{T_{n}}\right\}$ the transistor is in triode region
(a) If $V_{x x}=2.5 v$, the transistor can be represented as a resistor by the channel resistance

$$
\begin{aligned}
R_{c h} & =\frac{1}{\mu \operatorname{cox} \frac{W_{L}}{L}\left(V_{g 5}-V_{T}\right)}=\frac{1}{100 \times 10^{-6} \times \frac{12}{1} \times(2.5-0.75)} \\
R_{c h} & =476.19 \Omega \\
V_{\text {oltage }} G \text { Gain } & =1+\frac{R_{F}}{476.19 \Omega}
\end{aligned}
$$

(b) From the $R_{c h}$ equation, we notice that as $V_{g s}$ increases, Rah decreases; therefore, the gain of the noninverting amplifier increases

Problem 7
(a) $N_{0} \Delta C$ current goes through the capacitor

$$
\begin{aligned}
& \rightarrow I_{D}=I_{B}=J_{S} A\left(e^{\frac{V_{B}}{V_{t}}}-1\right) \\
& \rightarrow V_{\Delta}=V_{t} \ln \left(\frac{I_{B}}{J_{S} A}+1\right)=0.026 \ln \left(\frac{1 \times 10^{-3}}{10^{-14} \times 10 B}+1\right)=0.539 v
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (c) } \frac{\left(V_{\text {out }}-V_{\text {in }}\right)}{50}+\frac{V_{\text {out }}}{R_{0}}=0 \\
& \rightarrow V_{\text {out }}\left(\frac{1}{50}+\frac{1}{R_{D}}\right)=\frac{V_{\text {in }}}{50} \\
& \rightarrow \frac{V_{\text {out }}}{V_{\text {In }}}=\frac{1}{50\left(\frac{1}{50}+\frac{1}{R_{D}}\right)}=\frac{1}{1+\frac{50}{R_{D}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \quad R_{0}=\frac{V_{t}}{I_{\text {diode }}}=\frac{0.026}{0.001}=26 \Omega \\
& \Rightarrow \quad \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+\frac{50}{26}}=0.342
\end{aligned}
$$

(d)

$$
\begin{aligned}
& R_{0}=\frac{0.026}{0.005}=5.2 \Omega \\
& V_{\text {out }}=\frac{1}{V_{\text {in }}} \frac{1+\frac{50}{5.2}}{}=0.0942
\end{aligned}
$$

Problem 8
(a)

(b) From the small signal equivalent circuit,

$$
\frac{\left(V_{x}-V_{\text {out }}\right)}{50}+\frac{V_{x}}{R_{s}}=0
$$

Assuming the amplifier is ideal, $V_{x}=V_{\text {in }}$

$$
\begin{aligned}
& \rightarrow \quad V_{\text {in }}\left(\frac{1}{50}+\frac{1}{R_{D}}\right)=\frac{V_{\text {out }}}{50} \\
& \rightarrow \quad \frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{50}{R_{B}} \\
& \quad R_{D}=\frac{V_{t}}{I_{m A}}=\frac{0.026}{0.001}=26 \Omega
\end{aligned}
$$

$$
\rightarrow \quad \frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{50}{26}=2.923
$$

(c)

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{50}{R_{D}} \\
& f_{D}=\frac{0.026}{10 \times 10^{-3}}=2.6 \\
\Rightarrow & \frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{50}{2.6}=20.23
\end{aligned}
$$

